
J .  Fluid Mech. (1990), vol. 219, p p .  291-311 
Printed in Oreat Britain 

29 1 

Hypersonic viscous interaction with strong blowing 

By A. F. MESSITER AND M. D. MATARRESE 
Department of Aerospace Engineering, The University of Michigan, Ann Arbor, 

MI 48109-2140, USA 

(Received 16 June 1989) 

Solutions are obtained for hypersonic viscous interaction along a flat plate in the 
presence of strong boundary-layer blowing, with inverse-square-root injection 
velocity, for laminar flow over a cold wall and with a power-law viscosity- 
temperature relation. In  the strong-interaction region, self-similarity is preserved if 
the blowing is such that the thicknesses of the inviscid shock layer, viscous shear 
layer, and inviscid blown layer all have the same order of magnitude. The weak- 
interaction region is also considered, and an approximate interpolation is used to join 
the solutions for the surface pressure. Certain difficulties in asymptotic matching are 
discussed, and the extension to flow past a thin wedge is shown. 

1. Introduction 
Drastic changes in the pressure variation along a boundary layer can occur in the 

presence of strong surface blowing, especially if the blowing, velocity is large enough 
that the boundary layer is completely ‘blown off’ from the surface. In that event a 
region of nearly inviscid injected fluid is present between the thin viscous layer and 
the wall, with the pressure distribution determined through an interaction with the 
external flow. For subsonic or for incompressible laminar flow asymptotic solutions 
beyond blowoff were given by Kassoy (1971) and by Klemp & Acrivos (1972). For 
supersonic speeds Cole & Aroesty (1968) considered strong blowing in limiting cases 
such that the thickness of the blown-off shear layer could be neglected. 

Among other studies, only a few were primarily concerned with obtaining 
asymptotic solutions for strong blowing. Kubota & Fernandez (1968) solved the 
boundary-layer equations for compressible laminar flow in the limit of large mass 
injection. Wallace & Kemp (1969) followed Cole & Aroesty (1968) in considering 
examples for which the shear-layer thickness can be neglected. Smith & Stewartson 
(1973b) treated a supersonic boundary layer with uniform blowing that starts at a 
point downstream of the leading edge, choosing the velocity to have an order of 
magnitude consistent with triple-deck scaling. A good summary of this and other 
earlier work was given by Smith & Stewartson ( 1 9 7 3 ~ ) .  

At hypersonic speeds interaction effects are present even in the absence of blowing. 
If a flat plate is placed in a uniform hypersonic flow, the boundary-layer displacement 
effect causes the appearance of a shock wave. Far enough downstream the pressure 
change across the shock wave is small (‘weak interaction’) but in a region further 
forward the pressure ratio across the shock becomes large (‘strong interaction ’). At 
points still closer to the leading edge, all relevant distances are of the same order of 
magnitude, so that the boundary-layer approximation fails, and the distinction 
between boundary layer, inviscid shock layer, and shock wave disappears (‘merged- 
layer regime ’). These effects have been discussed in the books by Hayes & Probstein 
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(1959) and by Stewartson (1964) ; additional details concerning asymptotic matching 
of the strong-interaction solutions have been given by Bush (1966) and by Lee & 
Cheng ( 1969). 

Self-similarity for hypersonic strong interaction is preserved for surface blowing of 
a power-law form consistent with the usual interaction solutions. Li & Gross (1961) 
gave numerical results for the strong-interaction problem with weak blowing such 
that the boundary layer is not yet blown off. Of interest in the present work is the 
case of larger blowing velocity such that the injected gas occupies a ‘blown layer’ 
having thickness of the same order as the thickness of the viscous shear layer and the 
inviscid ‘shock layer ’ between the viscous layer and the shock wave. The shock layer 
is described by hypersonic small-disturbance theory (Van Dyke 1954), the blown 
layer by ‘inviscid boundary-layer equations’ and the viscous layer by the usual 
boundary-layer equations, all in self-similar form. In  the case considered here, the 
injected gas is taken to have density of the same order as the density in the 
undisturbed external flow, whereas the density in the high-temperature viscous layer 
is much lower. Solutions are described for each of the three layers, weak interaction 
further downstream is discussed for the same wall conditions, and the extension to 
wedge flow is shown. 

2. Formulation 
A semi-infinite flat plate is placed in a uniform hypersonic flow with velocity u,, 

pressure I),, density p,, temperature T,, Mach number M,, and viscosity coefficient 
p,. Coordinates X and Y are measured along and normal to the plate, respectively, 
with origin a t  the leading edge. The non-dimensional velocity u = (u, w), pressure p ,  
density p, temperature T, and viscosity coefficient p are all referred to their 
undisturbed values. The viscosity is assumed to depend on the temperature through 
the power-law relation p = T”, where + < w < 1 ; the case w = 1 is also considered 
briefly. 

The non-dimensional continuity, momentum, and energy equations for steady 
flow can be written 

(2.1) 

(2.2) 

(2.3) 

where y = c p / c ,  is the ratio of specific heats; H is the total enthalpy, non- 
dimensionalized with $&; the coordinates are x = X / X ,  and y = Y / X , ,  with X ,  a 
reference length still to be defined; and Re = u,X,/v, is the Reynolds number, with 
v, = y,/p,. The stress tensor is 7 = 2p~+AZdiv u, where h is the second viscosity 
coefficient, non-dimensionalized with y, ; E is the rate-of-strain tensor ; and Z is the 
identity tensor. The heat conduction vector is q = - y V T / { ( y -  l)W,Pr), where Pr is 
the Prandtl number. For simplicity the specific heats are taken to be constant ; the 
injected gas is considered to be air; a perfect gas is assumed, so that p = pT; and the 
Prandtl number is taken equal to one. 

The reference length X, is chosen such that for X 9 X, the boundary layer has only 
a small effect on the external flow (‘weak interaction’) whereas for X < X, the 
changes in pressure are large in comparison with the undisturbed pressure (‘strong 
interaction ’) ; that is, the shock wave is very weak for X % X, but very strong for 
X <X,. For weak interaction the shock wave has slope z l / M , ,  whereas the 

divpu = 0,  

pu - Vu + (yM2,)-’ V p  = Re-’ div 7 ,  

pu - V(+H) = Rep1 div (zu-q), 
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streamline inclination resulting from the boundary-layer displacement effect is 
O{(W,+w/Rei) (XJX);} .  Requiring the latter expression to be much smaller than 1/M, 
when X @ X ,  leads to the choice X, = MZ2"' v,/u,, and so the two large parameters 
M, and Re are related by Re = MZ2w.  The coordinates then are defined by 

x = X / X , ,  y = Y/X, ,  X ,  = M4mf2"' v,/u,. (2.4) 

The usual hypersonic viscous interaction parameter x, based on a distance X ,  is 
proportional to x-:. Solutions for the strong- and weak-interaction regimes are found 
by considering limits of (2.1)-(2.3) as M,+ co and x+O or x+ co respectively. 

It is convenient to think first in terms of the dividing case, represented by 
equations obtained in the limit as M ,  + 03 with x fixed. In this case the Mach number 
based on velocity normal to the shock wave is neither close to one nor large. With 
strong blowing the boundary layer is blown off the wall as a viscous free-shear layer, 
again described in the limit by the boundary-layer equations. An inviscid shock layer 
between the shock wave and the shear layer is described in a first approximation by 
the hypersonic-small-disturbance equations. The injected gas in a low-speed region 
below the shear layer is also described asymptotically by inviscid-flow equations. 
Solutions in adjacent regions are to be joined by appropriate asymptotic matching. 

The non-dimensional stream function + (referred to p, u, X , )  is defined by 

$, = pu, $$ = -P". (2.5) 

It can be seen that the mass flow $ will have different orders of magnitude in 
different parts of the flow. For x = O(l) ,  the shock wave is located at y = O(l/M,) 
and has slope O( l/Mw) ; the mass flow crossing the shock wave is + = O( l/Mw) ; and 
in the inviscid flow behind the shock wave p -  1 = 0(1) ,  p = O ( l ) ,  and T = O(1). The 
viscous shear layer has high temperature T = O(W,),  because some of the kinetic 
energy is converted to thermal energy, and low density p = O(l/W,), because p = 
pT. If diffusion and convection terms are required to be of the same order for X = 
O(X,) ,  where X ,  is defined by (2.4), the shear-layer thickness is O(l/M,), and since 
u = O(1) the mass flow in the shear layer is $ = O(l/Mw). In the blown layer 
adjacent to the wall, the density p is 0(1)  for the case to be considered, and for 
p -  1 = 0 ( 1 )  the momentum equation then gives u = O(l/M,). If the blown-layer 
thickness is also to be O(l/M,), the mass flow must be $ = O(l/W,). The reference 
streamline is chosen such that $ > 0 for air from the free stream and $ < 0 for the 
blown gas ; the streamline $ = 0 lies within the shear layer. 

It appears helpful to introduce notation which takes into account the different 
orders of magnitude in the different flow regions. For this purpose a hat, bar and tilde 
will denote variables in the inviscid shock layer, the viscous shear layer, and the 
inviscid blown layer, respectively. The corresponding stream-function coordinates 
are, respectively, 

In the shock layer, the dependent variables are expanded in the form 

$ = M,+,  46 =W, +, 3 =M2,$. (2.6) 

v = M;16(x, $) + . . . , 
p = $(x,&)+ ..., 
p = $(x, &)+. . . , 

y =M-,l$(x, &)+. . . , 
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for 0 < $ < $s, where $s is the value of $ a t  the shock wave ; also u = 1 + . . . , and 

(2.11) 
= $/b.  In  the shear layer, 

u=a(x ,$ )+  ..., 
p = M ~ ~ p ( x , $ ) +  ..., 
T = M", T(x, 3) + . . . , 

(2.12) 

(2.13) 

y = MG1 g(x, $) + . . . , (2.14) 

and p = pT.  The range for $ is $o(x) < $ < co, where go(.) < 0 is to be determined. 
In the blown layer, 

u =M;'C(x,$)+ ..., (2.15) 

v = M-," G(x, 4) + . . . , (2.16) 

p = p"(x, 4) +. . . , 
T = p ( x ,  &) + . . . , 

(2.17) 

(2.18) 

y = M;lj-jY"(x, 3) + . . . , (2.19) 

and j? = p"p. The range for $ is &,(x) < $ < 0, where $,(x) is the value of $ at the 
wall and is specified. The combined displacement effect of the viscous layer and 
blown layer implies an effective thin body shape 

y =M- , l l ( x ) ,  d(x) = d(x)+d"(x), (2.20) 

where the functions d(z) and i(x) represent, respectively, the contributions of the 
viscous and blown layers, to be determined. When M ,  is large, omitted terms are 
small in comparison with terms retained in each of the expansions (2.7)-(2.19). 
Formulations for the strong- and weak-interaction problems are obtained by further 
expansion of (2.7)-(2.20) as x+O or z+ 00 respectively. 

In the strong-interaction limit x + 0, the hypersonic-small-disturbance equations 
possess a family of self-similar solutions corresponding to flows past thin power-law 
bodies. The viscous-layer equations likewise possess a family of self-similar solutions. 
If the solutions in the two regions are required to match correctly, it is found that 
the similarity variable (for y) must be M ,  y/xf and the pressure in the viscous layer 
is p - plx-i (e.g. Stewartson 1964). I n  the presence of surface blowing the self- 
similarity is preserved if the blowing velocity and wall temperature are such that 
thickness of the blown layer is also O(M-,' xi). The effective body shape d(x) then has 

(2.21) 
the form 

where dl and i1 are constants to be determined, and the contributions of the viscous 
and blown layers are d(z) - Alxf and i(x) - d; xi. It also follows that the shock- 
wave slope dY/dX is no longer small when z = O ( M G ~ ) ,  i.e. when X = O ( M 2  v,/u,) ; 
a strong-interaction solution thus describes the flow region M-," < x << 1 .  The various 
flow regions are indicated in figure 1.  

For strong interaction it is seen, with the help of the shqck-wave jump conditions, 
that the mass flow in the inviscid shock layer is $ = MZ1 41. = O(M-,' xg). In the shear 
layer, the temperature is T - M", T = O(M2,) and the density (from the perfect-gas 
law) is p - M;*p = O(M-,2 2-i) ; the velocity is u = O( l ) ,  and so the mass flow is much 
smaller, namely 41. = M;3 3 = O(MG3 x f ) .  I n  the case to be considered here, the wall 
density is taken to be pw - pw = 0(1), and the Bernoulli equation for compressible 
flow gives u - M2l C = O(M-,' x-i) for the injected gas ; the required mass flow $ = 
M-,"$ = O(M;2d) in the blown layer is therefore provided by a blowing velocity 
v, - M-,2 G, = O(Mi2 zd). It follows, for example, that the mass flow pw v, a t  the wall 

d(z) - d l x i ,  d, = dI+i l ,  
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FIGURE 1.  Flow regions for viscous interaction in hypersonic flow past a flat plate with strong 
blowing. 

is smaller than the mass flow p, u, d(A/M,)/dx through the shock wave by a factor 
O( l/M,), and that the wall shear stress (p i3u/i3y), is smaller than the momentum flux 
p,vk at the surface by a factor 0(Mz2").  The three different mass flows suggest the 
three similarity variables (for $) needed for the inviscid shock layer, the viscous 
shear layer, and the inviscid blown layer: 

(2.22) 

The choices for the blown layer are, however, not unique. The required conditions 
(mass conservation, perfect-gas law, Bernoulli equation) are found to be satisfied if 
M, = (const.)M-,l x-f, where M ,  = M, v,  T$ is the Mach number of the injected gas 
a t  the surface. Another possible choice that would satisfy this requirement is T, = 
const. and v,  = M;221wx-f, giving a mass flow $ = O(M;*xi) that has the same x- 
dependence as the mass flow in the shear layer. This case corresponds more closely 
to the flows considered by Kubota & Fernandez (1968) and Li & Gross (1961). 
Although the wall temperature then would not match directly with the higher 
temperature in the merged-layer regime, the solution methods are otherwise the 
same, with some different details for the blown layer and for the final result relating 
surface pressure and blowing velocity. 

The layer thicknesses and mass flows for strong interaction corresponding to (2.21) 
and (2.22) are summarized in figure 2. Solutions for the three regions can be obtained 
separately, each leading to  a relation between pressure and a layer thickness, as 
shown in $3. First-order matching conditions then allow the results to be combined 
so as to determine the relation between surface pressure and blowing velocity. Some 
numerical results are described in $4. 
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I I/ 

t x = X/X, - 
FIGURE 2. Orders of magnitude for layer thicknesses and mass flows in 

strong-interaction region. 

3. Solutions 
3.1. Inviscid shock layer 

In a first approximation the inviscid flow a t  high Mach number past a thin two- 
dimensional body is equivalent to one-dimensional unsteady flow in a plane slab of 
fluid passing over the body at the undisturbed speed, and is described by the 
hypersonic small-9isturbance equations (Van Dyke 1954). In terms of independent 
variables x and $ the continuity, momentum, entropy, and streamline equations 
become, respectively, 

(3.1) ( 1 / 6 ) , 4 & + , . .  = 0, 

6,+ y-l&+. . . = 0, (3.2) 

- (?$/a + ' - = 0, (3.3) 
&-( l@)+ ... = 0. (3.4) 

If the shock wave $ = $,(x) is very strong, so that 6: %- 1,  the corresponding jump 
conditions across the shock are 

= ( ? + 1 ) / ( Y . - 1 ) + . . . ,  

= 2y$;z/(y+1)+...1 

6, = 2&/(y+l )+  ..., 

9 s  = $Sl 

where 6, = b(x, &,), etc. As $+ 0, at the inner 'edge' of the shock layer, $+ A(x) and 

In the limit as M ,  + 00, x + 0, and $ -+ 0 such that M4, x + 00 and [ = $/xi is held 
fixed, the functions appearing in (2.7)-(2.10) can be expressed in self-similar form by 

$+ d'(X). 

2" * 6 = x 4Vl([) + . . . , 
r; = x-$,(g) + . . . 

b =bdO+... , 
$ A  

$ = xql([) +. . . , 

(3.9) 
(3.10) 

(3.11) 

(3.12) 

Substitution into (3.1)-(3.4) then provides a system of first-order nonlinear ordinary 
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differential equations, subject to boundary conditions found from the shock relations 
(3.5)-(3.8). The entropy equation can be integrated to give a relation between @, and 
P1:  

(3.13) 

Numeri:al integration of the remaining equations for y = 1.4, with $, +. A ,  and 8, +. 

:Al as 6+0, leads to the values 

$ , (O) /A;  = 1.1194, = 0.5912, (3.14) 

which agree with values given byA Brown & Stewartson (1975) and” by Li & qross 
(1961). Since 5, - constant as [ + O ,  (3.13) shows that p1 = O(e / (3Y) )  as c + O .  
Solutions for the viscous and blown layers are now needed to determine A ,  in terms 
of the blowing velocity at the surface. 

3.2. lnviscid blown layer 
Solutions for the blown layer follow directly from the results of Cole & Aroesty 
(1968). Since the layer is thin, in a first approximation the pressure is a function only 
of x and the differential equations are ‘inviscid boundary-layer equations ’ : 

p”cc, + y -y ,  + . . . = 0, 

$$+ ... = o ,  
$,- (y$/p”)p”,+... = o ,  

$$- (P3)-1 = 0, 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where $ = $12). The mass flow at the wall is & = $,(x), where d$, = -p“,v”, dx; the 
inverse relationship x = x,(&), where dx, = - (p”, v“,)-l d&, identifies a streamline by 
the location at  which it leaves the wall. At the wall the density p”, and the blowing 
velocity 6, are to be specified, and can be expressed by evaluating p” and v“ either a t  
x and &,(x) or a t  x, and $(x,). The latter interpretation is needed in most of the 
following, so p”, and v“, will denote quantities which are constant along streamlines. 
Integration of the entropy and momentum equations leads to solutions for p” and .ii: 
in terms of x and x, : 

- 2  ‘ u2 = -4, y-1  { 1 -(g) 

(3.19) 

(3.20) 

I 

where j i  = $(x) and ji, = ji(x,) ; T, = ji,/p”, is the wall temperature, as a function of 
2,. 

= $/xi fixed, where f, < f < 0, the solutions can be expanded 
in the form 

a=x-4zl($+ ..., (3.21) 

v” = x-k& + . . . , (3.22) 

p =P1(f)+ ..., (3.23) 

9 = X+$, + . . . , (3.24) 

g = X%j,(C) + . . . , (3.25) 

where $, is a constant to be determined, the blowing velocity is 6, = x;;v“,,, and 

If now x + 0 with 
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cw = - 2PlW Elw is a specified constant. With pw - 
shapes are found by substituting the expansions of (3.19) and (3.20) in (3.18) : 

A .  F. Messiter and M .  D .  Matarrese 

xi; and [ = xw/x, the streamline 

(3.26) 

where !fl = fjl/P1, ew = E(cw), etc. The effective layer thickness 2,x: is found by 
integration between 0 and 1. After a change of variable 7 = g(Y-')'('y), 

in agreement with a result of Cole & Aroesty (1968). For y = 1.4, 

d; = 3.501(71w~w/@1)~. 

If the shear-layer thickness were negligible, i.e. if I1 4 d;, then A, x d; and the 
surface pressure would be found by substituting this result in (3.14), with pl = i l(0).  
In the case of primary interest here, however, zl cannot be neglected; the required 
shear-layer solution is given in the next subsection. 

In the weak-interaction region downstream, for x 9 1,  the form of solution is 
different because pressure changes are small rather than large. If the blowing velocity 
remains vw(x) = M;2Glwx-g = Mw Elw(u,X/v,)-f for x 9 1, the mass flow in the 
blown layer is again $ = O(xr). The pressure perturbation 27- 1, in a first 
approximation, is now proportional to the slope dA/dx of the equivalent body. From 
the Bernoulli equation, the velocity .12 is O ( ( @ -  1);). A mass-flow balance for the 
blown layer then shows that, for x B 1, 

"p 

27-1 =x-i;l+... ,  

.12 = x-G1([) + . . . , 
g=x$;,(f)+ ..., 

(3.28) 

(3.29) 

(3.30) 

where a double tilde is used to distinguish where necessary from the symbols 
introduced for x 4 1. The solutions are found in the same way as for x 4 1 ,  but are 
simpler in form because the density p" - PlW is nearly constant for x 9 1 : 

(3.31) 

- 
3 1 - 2 A -  - 3 1 = 2($Y(P1,qw)f,  (3.32) 

where the effective thickness is d"(x) = i lxg.  The constant-pressure shear layer for 
x 9 1 has only a higher-order effect since its thickness d(x) = O(x$ is small in 
comparison with the blown-layer thickness z(x) .  The air that has passed through the 
strong shock wave further upstream, and therefore has higher entropy, contributes 
still another higher-order displacement effect that likewise can be neglected in a first 
approximation. The value (3.32) is consistent with the results of Cole & Aroesty 
( 1968). 

- I 
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3.3. Viscous shear layer 
The viscous shear layer is described in a first approximation as a mixing layer 
between air moving with uniform speed at zero temperature and another gas, here 
taken also to be air, a t  rest with zero temperature. In terms of independent variables 
x and $ the boundary-layer approximations to the momentum, total-enthalpy, and 
streamline equations are 

(3.33) 

(3.34) 

y+ = ( p Z - 1 ,  (3.35) 

T 
YPU 

a$ + --px = p( P-laa+)$ + . . . , 
8, = ji( P%H& + . . . , 

whereH= a2+2!T/(y-1). 

similarity variable f = $/xi, for 
Asymptotic representations of the solutions as x --f 0 are expressed in terms of the 

< c< co , in the form 

a = qQ+. . . , 
T =  q ( Q +  ..., 

1 
j j  = x-3p1 + . . . , 

(3.36) 

(3.37) 

(3.38) 

y = X:yl(Q + . . . , (3.39) 

where g < 0 and pl = constant; also p = p / T .  The value of g, which characterizes 
the amount of mass entrained in the lower part of the shear layer, is to be 
determined. Substitution gives the ordinary differential equations 

rsi 

(3.40) 

(3.41) 

yi = Z/@l a. (3.42) 

The solutions should match with the shock-layer solutions as c+ co and with the 
blown-layer solutions as c+ g. Thus it is required that a1 + 1, + 0 as f+ co and 
al -+ 0, q + 0 as c-+ g. The effective layer thickness is il xi, where zl is the integral of 
(3.42) from go to  00; the integral is finite because the temperature decreases 
sufficiently rapidly as c+co. The numerical solution is carried out in terms of a 
rescaled independent variable p;: c, and p ,  is to be found later from the appropriate 
matching conditions. 

The differential equations (3.40) and (3.41) are singular at f= co. For 4 < w < 1, 
the range of particular interest, the solutions as c+ co have the form a1 = (c-co)au+ 
and q = (c-g)flF, where ut and !P are analytic, and the exponents are 01 = 
w/(2w- 1 )  and ,!I = 1/(2w- 1) .  The coefficients q-la, of the second derivatives in 
(3.40) and (3.41) are therefore O(c-g )  as [+- co. The numerical integration, described 
in detail elsewhere (Matarrese & Messiter 1990), is based on a Newton iteration 
scheme, starting from simple assumed distributions for @, and q over a range EL < c< co. Initially the lower limit CL is chosen large enough to ensure that cL > co. 
However, the solutions thus obtained for a1 and do not have the correct 
asymptotic behaviour when c-+cL. Next EL is decreased until the numerical and 
asymptotic solutions are seen to agree closely for small a1 and q ; the value found for 
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-4 
0 0.4 0.8 

a, or T,/Tl,,, 

FIGURE 3. Scaled shear-layer solutions in strong-interaction limit, as functions of the stream- 
function variable p7tc= j$M“, $/&, for o = 0.75: -, velocity ii, ; ---, temperature q/q,,,. 

p-ic0 is believed to be accurate to within less than 0.1 %. The results for y = 1.4 and - ~- 
w = 0.75 are 

(3.43) 

The corresponding velocity and temperature functions a1 and are plotted against 
p;”in figure 3, for p; ig  < j~;fc< co ; has been normalized with its maximum 
value qm. 

Calculation of the pressure isAcompleted by matching p1 as c+ 00 with the shock- 
layer pressure & evaluated as [+ 0 and matching p1 as & co with the blown-layer 
pressure as c + O .  Thus 

(3.44) P1 = irl = $l (O) .  

Now (3.14), (3.27), and (3.43) can be combined to eliminate the layer thicknesses, as 
shown in $4 below. 

If w --f +, the exponents a and ,I3 obtained above in the solutions for c+ co will both 
become infinite, and clearly a different kind of asymptotic form is required. 
Numerical solutions for w = 0.7 and w = 0.6, not shown here, suggest that the lower 
limit [, +- co as w++.  When w = i, it then follows from (3.40) and (3.41) that a1 and 

become exponentially small as [+ - 00. 

For w = 1 the asymptotic behaviour as c+ g seems easier to understand in terms 
of Howarth variables defined by dY = pdg, dX = p d x  and the similarity variable 
7 = Y/(2X)a. The stream function and total enthalpy are 3 = (2X)iF(7) + . . . and H = 
G ( 7 )  + . . .respectively, where F and G satisfy the ordinary differential equations 
F’+FF”= y - 1 ( y - l ) ( F 2 - G ) a n d G + F G  = 0 . A s ~ - + - a 1 , G = O ( e ~ ) a n d F - F , =  
0(7e”), with F, (corresponding to go) to be determined; the fact that  

G = O((F-F,)/ln (F-F,)) 
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as 9 + - 00 implies the presence of a logarithm in q as c-+ co. The numerical solution 
when w = 1 can be obtained by a shooting method to give 

p;rAl = 0.2100. (3.45) 
1 -  plic, = -2.066, 

3.4. Higher-order matching 
Matching of the shock-1ayer"and shear-layer solutions requires for eacb variable that 
the solutions evaluated as 5- 0 and c+ co agree term by term. As f[+ 0, the inner 
edge of the shock layer is approached from above and the hypersonic-small- 
disturbance solutions (3.13) and 13.14) show that the tnemperature has the form T - 
F = $/j? = x-(iil/j?l+. . . = O(~-f f [ -* / (~y))  as x+O and g + O .  However, as c+ co, the 
outer edge of the shear layer is approached from below and it follows from (3.41) that 
T - M", T' = M",p/p = O(c-2/(1-w)). Since these two representations for T are not the 
same, the matching is not complete. Bush (1966) has shown that an additional 
'layer' is required between the shock layer and the shear layer. A solution for T in 
terms of a variable cB = M$ yi/xc, for proper choices of the exponents A and C ,  
allows matching in a first approximation with 9 as cB + co and with M", T' as cB + 
0. When w = 1,  the solution for T decays exponentially as c+ 00 ; Lee & Cheng (1969) 
have shown that the matching difficulty is resolved not by adding another layer but 
by including higher-order terms in the shock-layer and shear-layer solutions. 

Another difficulty arises with respect to matching of the shear-layer and blown- 
layer solutions. As c+ g, the inner edge of the shear layer is approached from above 
with = O((~-&)~~(zw-l) 1 and T - M", T = O{M2,(c- co)lf(zw-l)). As [-+ 0, the 
outer edge of the blown - layer is approach_ed from below with u - M-,'.ii = 

O{M;l x-i( -[)-$} and T - T = @/p" = O(x-a( - f[)-'/y}. The matching again is not 
complete, and it is not entirely clear how to proceed. For a first attempt, one might 
think that an additional solution is needed in a region between the shear layer and 
the blown layer, for 3 close to xico and 3 close to M;lxiG. The blown-layer and 
viscous-layer solutions for u would then be required to match with this new solution. 
If the matching for u is considered first, one is led to introduce a similarity variable 

f[* = (M,  xi)-l/(WM a, (+xi&), (3.46) 

- 

and to try representations 
a = (M,  x$-h:(g*) + . . . , (3.47) 

T = (M m xi)-1/(2w) T* 1 (6*) + * .  * 9 (3.48) 

for - 00 < f[* < 00. However, this procedure leads to approximate equations that are 
just simplified versions of (3.40) and (3.41), with cz G and a: G q. Except for 
additive integration constants, the solutions are already contained within the 
solutions to (3.40) and (3.41) and are not sufficient to allow the proper functional 
forms for both f[* + - 00 and f[* -+ co. It is probably necessary both to include higher- 
order terms and to consider still other limit processes for a complete description of 
the local asymptotic structure. These details are not needed if only a first 
approximation to the pressure is desired. 

If instead w = 1 the definition (3.46) for f[* again is appropriate, as is the 
representation (3.47) for u, but T has the modified form 

rT = {(M,x~)~ln(Mmx~)}- l~~(f [*)+  .... (3.49) 

The presence of the logarithm is associated with the exponential forms of u and Tin 
terms of the Howarth variables noted a t  the end of the preceding subsection. As a 
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result, the pressure-gradient term is absent from the momentum equation and two 
integrations can be carried out directly to give 

( u : - u ~ ~ ) + u ; ~ ~ l n  (u:-uT,) = -C0Y*/(4~1), (3.50) 

where ur0 = 2(p1v",,)i/((y- 1) ( --co)];, for matching with (3.20). It follows also that 

T: = (const.)(u:-u&). (3.51) 

The representations for u and T match properly as c* + 00, and u approaches a small 
constant value as [* + - 00,  but T: is exponentially small as [* + - 00 and higher- 
order terms would be needed for completeness, as a t  the outer edge of the shear layer 
(Lee & Cheng 1969). 

These considerations indicate some of the difficulties encountered in attempting to 
derive higher-order terms and thus to  obtain estimates of the largest neglected 
effects. For x = O ( l ) ,  it is fairly easy to see that the relative errors in the differential 
equations obtained in each of the three limits (shock layer, viscous layer, blown 
layer) are all O(Mi2) .  The expansions of the flow variables as M ,  --f co would then 
seem to proceed in integer powers ofM2,. But the higher-order terms not yet matched 
will evidently require larger correction terms, probably in all three flow regions. It 
is therefore not possible to assess the error without further consideration of the next 
terms in each of the expansions. Moreover, in the strong-interaction limit x --f 0 the 
solutions will have expansions in positive powers of xi and (M,  xi)-', and in the weak- 
interaction limit x+ 00 the solutions will be found as series expansions in negative 
powers of x, so that still other higher-order terms would have to be considered. 

An additional question concerns the behaviour of the flow for weaker blowing. 
If the blowing velocity is decreased by taking Clw G 1, the injected mass I1C.l = 
2M-,2~l,C,,x~ remains large in comparison with the mass flow M;3xill&l in the lower 
part of the shear layer for values of x such that M ,  xi % C;;. The location of blowoff 
is a t  x = O(M, C1w)-4 and moves downstream as Clw decreases from O( 1)  to O(M;l). 
When Clw = O(M;l), the boundary layer is attached throughout the strong- 
interaction region x 4 1, and in the weak-interaction region x % 1 the injected mass 
is of the same order as the mass flow O ( M G ~  xi) required for the constant-pressure free 
shear layer. A special solution is needed for a narrow range of M ,  Clw close to a 
dividing value, as for incompressible flow (Kassoy 1971 ; Klemp & Acrivos 1972). 

3.5. Wedge $ow 
Inviscid hypersonic flow past a thin wedge is easily described with the help of 
suitable approximations to the shock-wave jump conditions. If the wedge half-angle 
is a G 1, and M ,  a % 1, (3.5) gives p - ( y+  l)/(y- l ) ,  and (3.6) with the shock slope 
M ,  $: - Q(y + 1) M ,  a gives p - t y ( y  + l)W, a* in the uniform flow between the shock 
wave and the wedge surface; the Mach number there is M - {$(y- l)}-ga-'. If now 
a boundary layer is considered, its temperature is again T = O(ML) ,  but the density 
p = p / T  is O(a2) .  For weak interaction the boundary-layer thickness is 

smaller by a factor O(M-,la-') than for a flat plate. This thickness is small in 
comparison with the distance t ( y  - 1 )  CCX between wedge surface and shock wave, and 
the shock wave is therefore weak, only if X 9 M2~a-4vm/u,. The reference length X, 
should therefore be X, = 1M2~a-"vw/u, for the wedge, smaller by a factor ( M ,  a)-" 
than for a flat plate. The non-dimensional coordinates x, y and y i  are now defined in 
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terms of this new X,. The scaled y-coordinates, however, are measured relative to the 
surface, with M-,l replaced by a, so that 

3 = $ = (y - ax)/a. (3.52) 

With the new X, the wedge flow is identical to  flow past a flat plate in the first 
approximation when X Q X,. That is, the wedge thickness is small in comparison 
with the thickness of the disturbed-flow region when X 4 X,. Since the merged-layer 
regime again is present for X = O(M2,"v,/u,), i.e. for x = O(a4),  the strong- 
interaction description given above now applies to  the region a4 Q x 4 1 ,  a region 
that is shorter than for a flat plate in view of the revised definition for X,. 

In the weak-interaction region for x 9 1, the flow between the shear layer and the 
strong shock wave from the wedge vertex is, however, described in a different way, 
in terms of small perturbations about the uniform flow behind the shock wave. A 
linearized flow description is again appropriate, but both families of waves are 
present because outgoing waves are reflected from the shock wave; the reflected 
waves are weak in a numerical sense, but not in an asymptotic sense, since the ratio 
of reflected-wave strength to incident-wave strength does not vanish under the limit 
processes considered here. In  the blown layer the density is nearly constant, and so 
the incompressible form of the Bernoulli equation is appropriate in the first 
approximation. 

The required solution in the blown layer was Fiven by Cole & Aroesty (1968). The 
blowing velocity is taken to be ow = a2filw 5 - T  = f i lW(u,X/v , ) -~ ,  the same as 
chosen for the flat plate. For x + m, the pressure perturbation is related to u by the 
Bernoulli equation for incompressible flow and, for matching with the perturbed 
wedge flow, has the same order of magnitude as the product of (M,  a)' and the ratio 
of a typical perturbation in streamline slope a t  the wedge angle. I n  the blown layer 
(3.19) and (3.20) are replaced by 

(3.53) 

where again the value of x, defines a streamline. The solutions for u and p when 
x 9 1 are expanded in terms of c =  $/xi as 

2 
p - PlW = const., u2 - M X W )  -P(X)}, 

YM", P l W  

(3.54) 
I -  - 

u = a x - ~ ~ l ( ~ ) + . . . ,  p =M2,a2(y(Y+1)/2+x-~fil+ ...), 

where c1 is found in terms of & from (3.53) and & is a constant to be determined 
later. Again the double tilde is used where necessary to distinguish from quantities 
defined for x Q 1. The streamline shapes are found, again using $y = pu and E = 
xw/x, from 

ij = x5gl(C) +. . . , dg1 = - (2''Y - clw @( 1 - ti)-+ dt .  (3.55) 

The blown layer has the shape of an effective body - - 
i j  - d; xg, d; = 4(yP",, GW/(2fi1)}4 (3.56) 

I 

where d; is found by integration of (3.55). 
I n  the region between the shear layer and the shock wave the flow is nearly 

uniform with the flow variables equal to the values obtained from the shock-wave 
relations. As x+  00, w =a{l+wl(x,$)+ ...}, (3.57) 

(3.58) 

(3.59) 
p = M2,a2{9 (y+  I ) + p , ( z ,  $ I + .  . .I, 
p = ( y +  l)/(y-- 1 ) + P l ( X , 9 ) + .  . . , 
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where Iwll < 1, ]p,l < 1, and lp,l Q 1. The perturbations in w, p, and p are described by 
the linearized form of the hypersonic small-disturbance equations (3.1)-(3.3) : 

where p1 is easily eliminated. Linearized boundary conditions are given a t  the wedge 
surface $ = 0 and at the undisturbed shock-wave position $ = +(y- 1)x:  

* - 
where d"((z) = Jlxi .  

The differential equations (3.60) and boundary conditions (3.61) are satisfied by 
solutions in the self-similar form dfn($/x) .  Since p, and w1 must each satisfy a wave 
equation, the solutions are known, moreover, to be functions only of x+Mo$, where 
M ,  = {$y(y- l)}-i. It follows that 

(3.62) 
1 
-pl = cl{z +Mo $}-'+ cz{x-M0 $}-:, 
Y 

(3.63) 

The integration constants c, and c2 are found from the boundary conditions to be 

(3.64) 

I 

ki 2(y+ 1) d; ki 
- h 3(y- l)Mo(ki-A)' 

c - -c l=  

(3.65) where k =  2 - ( Y - W 0 ,  = (Y- 1)MO - 1 
2 + (Y - 1 1 MO (y-l)M,+l '  

I 

The solution to (3.60) and (3.61) for arbitrary i(x) has been discussed by Chernyi 
(1961). The result is found as an infinite series, since a disturbance reaching the 
surface contains the effects of infinitely many wave reflections. Chernyi (1961) a n d  
Cole & Aroesty (1968) also specialized this solution for a power-law form of d"(x); 
equations (3.62)-(3.65) duplicate their results. I 

Setting $ = 0 in (3.62) gives 8, in terms of d;: - 
2y(y+ 1) d;(h + ki) 
3(y- l)Mo(ki-h) ' 

$l = X$J1(X, 0) = (3.66) 

A second relation between 6, and il is found from the blown-layer solution (3.56). 
~~ 

Eliminating A,, 
2y(y+l)(h+k$) 

3(y- l)Mo(ki-A) 
fil = 2(yp1,v";,)~ 

For y = 1.4, = 3.615 (plwGw)i. 

(3.67) 

4. Numerical results 
The stron interaction solutions are obtained in the limit as x + 0 and M, xf --f 00, 

with M ,  y/xz held fixed. In this limit the non-dimensional velocity u is zero in the 
4- 
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FIGURE 4. Scaled shear-layer solutions in strong-interaction limit, as functions of M ,  y/zi - &, for 
"Iw Yw = 0.01: -, velocity 4, for w = 0.75; ---, velocity ti1 for w = 1.0; ---, temperature ez.' 
T,/T,, for w = 0.75; - - - -, temperature Z/Z,,, for w = 1.0. 

blown layer, increases from zero to one across the viscous layer, and is equal to one 
in the shock layer. The scaled temperature M", T is zero, in the limit, in the blown 
layer and in the shock layer, and is O(1) in the viscous layer. For finite but large 
M ,  xi, the first corrections to the zero values of u and Wm T in the blown layer are 
proportional to powers of (H,x~)-l. The remaining parameters are the ratio of 
specific heats y ,  here taken equal to 1.4; the exponent w in the viscosity law p = T"; 
and a blowing parameter p",,GW, related to the momentum flux normal to the 
surface. 

In the first approximation for the strong-interaction region, the pressures (3.24) 
and (3.38) in the blown layer and viscous layer are functions of x only and are equal 
to the pressure (3.10) evaluated at the inner edge of the shock layer. The result (3.44) 
is fil = ir, = c1(O). The quantities $ , (O) /A; ,  jji a,, and dd, are given by (3.14), (3.27), 
and (3.43) respectively. With A ,  = 2, +Jl according to (2.21), the pressure p ,  at the 
surface is found for y = 1.4 and w = 0.75 as 

p ,  = {0.3721+3.703(p",,~,)~}x-~+. ... (4.1) 

p ,  = { 0 . 2 2 2 1 + 3 . 7 0 3 ( p " , , ~ , ) ~ } x - ~ + .  ... (4.2) 

If instead w = 1, the surface pressure becomes 

The ratio of the shear-layer thickness to the blown-layer thickness d; is found 
from (3.27), (3.43), and (3.44), and is seen to decrease as blwqw increases. 
When w = 0.75, the ratio is 

2,/d; = O.l19/(p", ,~, )~,  (4.3) 
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FIGURE 5. Velocity profiles u vs. M ,  y/xi in strong-interaction region, for w = 0.75: ---, shear layer 
for FlW q.,, = 0.01 ; -,---, blown layer for il,,.qw = 0.01, M ,  xz = 10, PIlw = 4;  -, composite for 
F1,qW = 0.01, M,xZ = 10, plw = 4;  ---, shear layer for &,qW = 0.02; ----, shear layer for 
Plw qW = 0.04. 

and when w = 1.0, the constant is replaced by 0.071. Thus the two layer thicknesses 
are equal when the value of (Plw qw)f is about 0.1 ; in the numerical calculations this 
parameter is taken equal to 0.1 or 0.2. The shock-wave shape for o = 0.75 is then 
found from (2.20), (2.21), and (3.14) to be 

ys = M-,'{0.9515 + 9.469(p",, q,)i}i xi+. . . . (4.4) 

If o = 1, the constant 0.9515 is replaced by 0.5680. 
The shear-layer velocity and temperature profiles of figure 3 are repiotted in figure 

4 as functions ofM, y/x', instead ofp;;W, $/xi, for two values of the exponent o and 
for ~ l w ~ w  = 0.01, i.e. for nearly equal blown-layer and shear-layer thicknesses. The 
hot low-density shear layer occupies the region d; < M ,  y/xg < 2, +d, and thus has 
a clearly defined thickness, as shown both by the figure and by the integral of (3.42). 
The blown layer is defined to be the region 0 < M ,  y/xi < d; between the shear layer 
and the wall and contains almost all of the blown gas, with the exception of an amount 
smaller by a factor O{(M, xi)-,} that is entrained in the lower part of the shear layer. 
The streamline separating free-stream air from the blown gas thus lies within the 
shear layer. Since the scaled viscosity coefficient in (3.33) and (3.34) is proportional 
to 5?, and T < 1, an increase in w decreases the diffusion rate and therefore decreases 
the shear-layer thickness d,. In figure 4 a change in w from w = 0.75 to w = 1.0 is seen 
to decrease A-, by a factor of about Q ,  and also, because of coueling through the 
pressure, to give a small increase in the blown-layer thickness A, ,  such that sum 
A ,  = d, + zl decreases. Since the shock-wave position g,, is proportional to A , ,  as seen 
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FIGURE 6. Temperature profiles Mz2 T us. M ,  y/xi in strong-interaction region, for o = 0.75 : ---, 
shear layer for plwqw = 0.01; ----, blown layer for plwew = 0.01, M,xi = 10, plw = 4;  -, 
composite for plwqw = 0.01, M,& = 10, FlW = 4;  ----, shear layer for p"lwv;Lw = 0.04. 

in (3.14), the shock-wave slope then decreases, and the pressure also decreases, as 
shown by (4.1) and (4.2). 

In figure 5 the shear-layer velocity u is plotted against M ,  y / x i  for w = 0.75 and 
for three values of the blowing parameter, plwGw = 0.01, 0.02, and 0.04. Stronger 
blowing of course moves the shear layer further from the wall and also decreases its 
thickness slightly. The velocity in the blown layer, smaller by a factor O{(M, xi)--1), 
is shown for M,x+ = 10, p"lwv"f, = 0.01, and B,, = 0.05. An inverse composite 
solution is also shown, obtained by adding the blown-layer and shear-layer solutions 
for M ,  y/xg in terms of u, for 0 < u < 1, and subtractin the common part, namely 
d;. This composite is uniformly valid to 0(1) in M ,  ylxz,  since the shear-layer and 
blown-layer solutions are recovered by taking limits with u fixed and with M ,  x h  
fixed, respectively. It would also be possible to obtain a shock-layer solution for u- 1 
and to use the results of Bush (1966) to show a smooth joining with the shear-layer 
solution. 

Profiles of the scaled temperature M-," T are shown in figure 6 for two of the cases, 
plw gw = 0.01 and 0.04, shown in figure 5. The maximum temperature T, is seen to 
be about T, = 0.031ww T,, for the selected values y = 1.4 and w = 0.75. This value 
of T, is less than + of the isentropic stagnation temperature T,, and so real-gas effects 
are delayed to a somewhat higher Mach number than if the full T, were reached. A 
composite solution for M,y/x: in terms of M-," T is shown for the same numerical 
values as in figure 5. To allow the correct T at y = 0, the curve has been displaced 
downward by a small (higher-order) amount; the correction is chosen to decrease 
linearly with T and disappears a t  T = T,/T,. 

4 
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FIGURE 7.  Surface pressure distribution p, vs. x, in strong-interaction region: ---, &q, = 0.01 
and w = 0.75; ---, p’ 6 = 0.01 and w = 1.0; ---, plWqw = 0.04 and w = 0.75; ----, plwqw = 
0.04 and w = 1.0; ----, PI,$, = 0.16 and w = 0.75; ....., plwGw = 0.16 and w = 1.0. 

I W  I W  

Figure 7 shows the strong-interaction pressure for three values of the blowing 
parameter plwqw, for w = 0.75 and for w = 1.0. As predicted by (4.1) and (4.2), the 
pressure is linear in (,GI, qW)i and decreases as w increases. 

The weak-interaction pressure, forX % X,, differs from a constant value by O(x-f), 
as in the solutions (3.28) for a flat plate and (3.62) for a wedge. A calculation for 
X = O(X,) ,  however, would require numerical solution of partial differential 
equations in the shock layer and shear layer. Nevertheless, since the extensions 
(unwarranted, to be sure) of the asymptotic solutions toward X = X, do not lie very 
far apart, a reasonable idea of the approximate surface pressure in this region can be 
found quite easily by interpolating in some very simple arbitrary way between the 
strong-interaction and weak-interaction results. The interpolation formula adopted 
here is 

p W - 1  = r ~ ( s t r o n g ) - i } + ( i - r ) ( p ~ k ) - i }  W = rFlx-++(i-r)$lx-t, (4.5) 

where $, is given by (3.32), and 

/3 = cosh-’ 2, 
1 

cosh px ’ 
r=- 

so that r decreases from 1 to 0 as x increases from 0 to 00. The free parameter /3 in 
the interpolation formula has been chosen so that r = t when x = 1. That is, at  x = 
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FIQURE 8. Surface pressure Ap, = ( p w - 9 ( y +  1) (M, E ) ~ } / ( M ,  a)a 'us. x = X/{M:a-'v,/u,} for thin 
wedge, for Plw q, = 0.01 and w = 0.75 : ---, strong-interaction solution ; - - --, weak-interaction 
solution ; -, interpolated solution. 

1 the interpolated solution is chosen to lie halfway between the pressures that would 
be predicted if the strong-interaction and weak-interaction solutions were evaluated 
there (beyond their respective regions of validity x Q 1 and x % 1) .  For a thin wedge, 
the required rescaling gives 

where now x = X/{M2,"a-4v,/u,} and 6, is given by (3.67). Interpolated surface 
pressures for a wedge are shown in figure 8. Although the error appears to be small, 
it should be remembered that the value (4.6) for p is arbitrary, and a change in p 
would shift the location of the interpolated curve. The function r is likewise 
arbitrary, and there is no theoretical basis for the suggested choice ; the accuracy of 
the interpolated curve in figure 8 remains uncertain in the absence of a numerical 
solution for X = O(X,). 

Additional numerical results for a wedge in the case of uniform surface 
temperature, including the integrated force change as a function of blowing rate and 
other parameters, have been given by Matarrese, Messiter & Adamson (1990). 

5. Concluding remarks 
The extension of hypersonic viscous strong-interaction theory to permit large 

surface blowing velocity requires that choices be made among several possibilities for 
the surface boundary conditions. Two constraints have been imposed : the perfect- 
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gas law must be satisfied, and the blown-layer thickness is taken to be of the same 
order of magnitude as the viscous- and shock-layer thicknesses. Here the density of 
the blown gas has been chosen to be of the same order as the undisturbed air density 
and to be constant a t  the wall ; the corresponding form for the blowing velocity is 
then fixed. Other choices can be made, leading to  differences in the blown-layer 
solution and in some cases differences in the conditions a t  the lower ‘edge’ of the 
shear layer. 

Even a first approximation is found to introduce some subtleties. Although the 
three appropriate limit processes have been successfully applied to give self- 
consistent asympotic flow representations in the three layers, the matching of 
solutions in adjacent layers is not complete, and would have to be refined if higher 
approximations, presumably proceeding in powers of x and ( M ,  d - l ,  were desired. 
Moreover, the results do not reduce in a simple way to the solutions for weak blowing. 
As for incompressible flow, a special limiting case would have to be considered in the 
neighbourhood of blowoff, when the amount of injected mass is close to the mass 
entrained in the lower part of the free shear layer. Finally, numerical solution of the 
shear-layer equations for w =!= 1 was not successful with a straightforward shooting 
technique, and ultimately was carried out by an approach to the desired result 
through neighbouring solutions. 

In  the present fomulation the scaled results contain only a single blowing 
parameter which measures the normal momentum flux a t  the surface. (The ratio of 
specific heats and the exponent in the viscosity law of course appear as well.) As an 
obvious extension it is planned to consider the injected gas as different from air, so 
that in general one more differential equation is required, with one or more additional 
non-dimensional parameters. Further numerical studies will then be carried out. It 
is also anticipated that the present formulation will serve as a useful test case for 
comparison with numerical Euler and Navier-Stokes codes. 

This research was supported in part by the US Army Strategic Defense Command. 
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